INTRODUCTION

Photoreactive peptides are generated by their functionalization with photo-active moieties and are used for observing bio-molecular interactions. Using photo-conjugated methods that includes chemical or enzymatic degradation processes it can be identified the contact part of the molecule.

For the generation of the photoreactive peptides with bioactivity which can be used in medicinal diagnostic or as transporters for already known bioactive compounds (antitumor, bacteriostatic), we synthesized photo-active derivatives from natural products (from Quinine it was synthesized 6-Methoxy Quinolinic Acid) or we used the chiral natural product itself Quinine.

OBJECTIVES

The coupling of the photo-active moieties was made by modifying the amino function of H-Val-His-Leu-Tyr-Arg-Asn-Gly-Lys-OH peptide in a position or the free hydroxyl groups.

Coupling of just one unit of 6-Methoxyquinoline-4-Carboxylic acid to H-Val-His-Leu-Tyr-Arg-Asn-Gly-Lys-OH peptide using 2-CI-1-Methyl Pyridinium Iodide

CONCLUSIONS

Novel photoreactive peptides were synthesized by coupling H-Val-His-Leu-Tyr-Arg-Asn-Gly-Lys-OH with chiral natural product Quinine and 6-Methoxy Quinolinic Acid derivate from Quinine using different activating agents for the acidic function. The use of 2-CI-1-Methyl Pyridinium Iodide is selective for the generation of the esters. The DCC coupling is not selective and the activated acid is coupled both to the OH and NH2 affording the corresponding esters and amides.

REFERENCES


Acknowledgements

This work was supported by the Romanian National Authority for Scientific Research (EXPLORATORY RESEARCH PROGRAM IDEI-PECPROJECT NR. 341-05.10.2011 – Immunomodulatory Fluoroglycopeptide Molecular Architectures, Ion Neda).